

7th Asian Workshop on Symmetric Key Cryptography (ASK2017) 9 Dec., 2017

Some Improvements of Non-Blackbox Cube Attacks

Yosuke Todo NTT Secure Platform Laboratories

Copyright©2017 NTT corp. All Rights Reserved.

- 1. Cube Attacks on Non-Blackbox Polynomials.
 - Proposed at CRYPTO 2017.
 - New generic tools for the cube attack.
- 2. Improvement 1.
 - Longer distinguisher is found when inactive bits are 0.
 - In detail, ePrint/2017/306.
- 3. Improvement 2.
 - Reduce the time complexity by exploiting low degree property of superpoly.
 - In detail, ePrint/2017/1063.

Cube Attacks on Non-Blackbox Polynomials (from CRYPTO2017)

Yosuke Todo, NTT Secure Platform Laboratories, Japan
Takanori Isobe, University of Hyogo, Japan
Yonglin Hao, Tsinghua University, China
Willi Meier, FHNW, Switzerland

- Consists of two parts
 - Key initialization.
 - Secret key and public IV are loaded to the internal state.
 - Execute the update function iteratively w/o output of key-stream sequence.
 - Key-stream generation.
 - Update function outputs key-stream sequence.

Example of Trivium : Internal State

state size = 288 bits

Innovative R&D by NT1

Example of Trivium : Key initialization

80-bit secret key

state size = 288 bits initialization = 1152 rounds

Innovative R&D by NT

80-bit initialization vector

Example of Trivium : Output key stream

1 update function outputs 1-bit key stream.

Stream ciphers

Idea of the cube attack [DS09]

$$t_{I} = v_{i_{1}} \times \cdots \times v_{i_{|I|}} \bullet \text{ Let } I = \{i_{1}, \dots, i_{|I|}\} \text{ be the indices of active bits.}$$

$$\vec{x} = (x_{1}, \dots, x_{n}) \quad \vec{v} = (v_{1}, \dots, v_{m}) \bullet \text{ Let } C_{I} \text{ be a set of } 2^{|I|} \text{ values where } v_{i} \ (i \in I) \text{ is active.}$$

$$z = f(\vec{x}, \vec{v}) = t_{I} \cdot p_{I}(\vec{x}, \vec{v}) + q_{I}(\vec{x}, \vec{v}) \oplus v \in C_{I} z = p_{I}(\vec{x}, \vec{v})$$

Attackers recover secret variable \vec{x} by analyzing $p_I(\vec{x}, \vec{v})$.

Concrete example

$$f(v_1, v_2, v_3, x_1, x_2)$$

= $v_1 v_2 v_3 + v_1 v_2 x_1 + v_2 x_1 x_2 + v_1 v_2 + v_2 + v_3 x_2 + x_2 + 1$
= $v_1 v_2 (v_3 + x_1 + 1) + (v_2 x_1 x_2 + v_3 x_2 + v_2 + x_2 + 1)$

$$\begin{cases} t_I = v_1 v_2 \\ p_I(\vec{x}) = v_3 + x_1 + 1 \\ q_I(\vec{x}) = v_2 x_1 x_2 + v_3 x_2 + v_2 + x_2 + 1 \end{cases}$$

$$\bigoplus_{(v_1,v_2)\in\{0,1\}^2} f(\vec{v},\vec{x}) = v_3 + x_1 + 1$$

Unfortunately...

e

S

$$t_{I} = v_{i_{1}} \times \cdots \times v_{i_{|I|}}$$

$$\textbf{n-bit secret m-bit public}$$

$$\vec{x} = (x_{1}, \dots, x_{n}) \quad \vec{v} = (v_{1}, \dots, v_{m})$$

$$\textbf{Stream ciphers}$$

$$t_{I} = \{i_{1}, \dots, i_{|I|}\} \text{ be th}$$

$$\textbf{indices of active bits.}$$

$$\textbf{Let } C_{I} \text{ be a set of } 2^{|I|}$$

$$\textbf{values where } v_{i} \ (i \in I) \text{ indices.}$$

$$z = f(\vec{x}, \vec{v}) = t_{I} \cdot p_{I}(\vec{x}, \vec{v}) + q_{I}(\vec{x}, \vec{v})$$

We cannot decompose
$$f(\vec{x}, \vec{v})$$

because real stream cipher is complicated.

Experimental balckbox analysis

Innovative R&D by NTT

- How to recover $p_I(\vec{x}, \vec{v})$.
 - 1. Assume that p_I is linear function.
 - 2. Randomly choose \vec{x} . iteratively compute $\bigoplus_{\vec{v} \in C_I} f(\vec{x}, \vec{v}) = p_I(\vec{x}, \vec{v})$.
 - 3. Execute linearly test on many \vec{x} . Recover p_I under the assumption that it's linear.

- Drawback
 - The cube size is limited in the range of experimental, e.g., $|C_I| \le 40$.

Motivation

We use the *division property* as a tool to analyze the sturcture of the superpoly.

Division Property

- Programming from scratch.
 - Depth/Breadth First Search.
- CP-based approaches.
 - Mixed Integer Linear Programming.
 - SAT solver.
 - Constraint Programming.

Zero-sum distinguisher

Zero-sum distinguisher is trivially application.

Innovative R&D by N

How to recover the ANF.

• The role of division property.

• We revisit what the division property can do.

What division property can do

• Assuming there is NOT trail $\vec{k} \xrightarrow{f(\vec{x})} 1$,

$$\bigoplus_{C_I} f(\vec{x}) = p(\vec{x}) = \bigoplus_{\vec{u} \in \mathbb{F}_2^n \mid \vec{u} \succeq \vec{k}} a_{\vec{u}}^f \cdot \vec{x}^{\vec{u} \oplus \vec{k}}$$

is always zero for any \vec{x} .

- In other words,
 - $a_{\vec{u}}^f$ is always 0 for any $\vec{u} \ge \vec{k}$.
- Division property can be used to analyze ANF coefficients.

Extension to key recovery.

- Innovative R&D by NTT
- Assuming there is NOT trail $(\vec{e}_j, \vec{k}) \xrightarrow{f(\vec{x}, \vec{v})} 1$, $a_{\vec{u}}^f$ is always 0 for any $\vec{u} \ge (\vec{e}_j || \vec{k})$.
- Then,

 $\bigoplus_{C_{I}} f(\vec{x}, \vec{v}) = p(\vec{x}, \vec{v}) = \bigoplus_{\vec{u} \in \mathbb{F}_{2}^{n+m} | \vec{u} \succeq (\vec{0} \| \vec{k}_{I})} a_{\vec{u}}^{f} \cdot (\vec{x} \| \vec{v})^{\vec{u} \oplus (\vec{0} \| \vec{k}_{I})}$ $= \bigoplus_{\vec{u} \in \mathbb{F}_{2}^{n+m} | \vec{u} \succeq (\vec{0} \| \vec{k}_{I}), u_{j} = 0} a_{\vec{u}}^{f} \cdot (\vec{x} \| \vec{v})^{\vec{u} \oplus (\vec{0} \| \vec{k}_{I})}.$

• The superpoly is independent of x_j becase $x_j^{u_j} = x_j^0 = 1$.

Summary of division property-based cube

By repeating this procedure, we can distinguish which secret-key bits are involved.

Applications	Previous Best	New Best
Trivium	799	832
Grain128a	177	183
ACORN	503	704
Kreyvium		872

XApplications to Kreyvium are explained the full version (ePrint/2017/306)

1st Improvement. Exploiting constant-0 cubes. (from ePrint/2017/306)

Yosuke Todo, NTT Secure Platform Laboratories, Japan
Takanori Isobe, University of Hyogo, Japan
Yonglin Hao, Tsinghua University, China
Willi Meier, FHNW, Switzerland

We want to fill the gap from other works.

$$\vec{x} = (x_1, \dots, x_n) \quad \vec{v} = (v_1, \dots, v_m)$$

$$\vec{x} = (x_1, \dots, x_n) \quad \vec{v} = (v_1, \dots, v_m)$$

Non-active bits are always 0 in many previous cubes. Non-active bits are any value in our cubes.

$$f(v_1, v_2, v_3, x_1, x_2)$$

$$= v_1 v_2 (v_3 + x_1 + v_3 x_2 + 1) + (v_2 x_1 x_2 + v_3 x_2 + v_2 + x_2 + 1)$$

$$p(v_3, x_1, x_2) = v_3 + x_1 + v_3 x_2 + 1$$

$$p(0, x_1, x_2) = x_1 + 1$$

We want to fill the gap from other works.

$$\vec{x} = (x_1, \dots, x_n) \quad \vec{v} = (v_1, \dots, v_m)$$

$$\vec{x} = (x_1, \dots, x_n) \quad \vec{v} = (v_1, \dots, v_m)$$

Non-active bits are always 0 in many previous cubes. Non-active bits are any value in our cubes.

- 0-constant cubes bring more powerful attack generally.
- Liu's cube (at CRYPTO17) also uses 0-constant cube.

We need a new technique to exploit 0-constant cube with the division property.

Exploiting the constant 0

• Non-cube bits are 0.

$$\vec{x} = (x_1, \dots, x_n) \quad \vec{v} = (v_1, \dots, v_m)$$

- If non-cube bit is fixed to 0, the propagation of the division property is restricted.

$$\begin{array}{cccc} v_{1} & & v'_{1} & (0,0) \neq (0,0,0) \\ v_{2} & & v'_{2} & (1,0) \neq (1,0,0), (0,0,1) \\ & & v'_{3} & (0,1) \neq (0,1,0), (0,0,1) \\ & & v'_{3} & (1,1) \neq (1,1,0), (0,0,1) \end{array}$$

Similar technique was already used by Sun et al's work in the context of the integral distinguisher (ePrint/2016/1101). Copyright©2017 NTT corp. All Rights Reserved.

Exploiting the constant 0

• Non-cube bits are 0.

$$v_{1} \rightarrow v_{1}' = (x_{1}, \dots, x_{n}) \quad \vec{v} = (v_{1}, \dots, v_{m})$$
If non-cube bit is fixed t
the division property is
$$v_{1} \rightarrow v_{1}' = (0,0) \rightarrow (0,0,0) \quad \text{impossible propagation}$$

$$v_{2} \rightarrow v_{2}' = (1,0) \rightarrow (1,0,0), (0,0,1) \rightarrow (0,1,0), (0,0,1) \rightarrow (0,1,0), (0,0,1) \rightarrow (1,1,0), (0,0,1)$$

$$(3) \rightarrow v_{3}' = (1,1,0), (0,0,1) \rightarrow (1,1,0), (0,0,1)$$

🕐 NTT

Similar technique was already used by Sun et al's work in the context of the integral distinguisher (ePrint/2016/1101). Copyright©2017 NTT corp. All Rights Reserved.

26

Summary of distinguishing attacks.

Applications	rounds	cube size	type	method
Trivium	837	37	zero sum	Liu & ours
	838	38	zero sum	ours
	842	37	biased sum	experimental (Liu)
Kreyvium	872	61	zero sum	Liu & ours
	873	62	zero sum	ours

- We can revisit Meicheng Liu's result.
- We can improve the zero-sum distinguisher on Trivium and Kreyvium from Liu's result.
- We haven't tried experimental approaches.
 - There is the possibility 38-dimensinal cube derives stronger biased sum distinguisher.

Comparison between Liu's result

	Liu's algorithm	Division property	Comment
Complexity	WIN	LOSE	We need to ask for solver's help to evaluate the division trails.
Accuracy	LOSE	WIN (w/ improved technique.)	I find some instances that division property is better than Liu's algorithm.
Flexibility	LOSE	WIN	Division property is applicable to arbitrary ciphers.

- Recommendation.
 - If the solver can stop, division property is better.
 - Otherwise, e.g., the state size is too large, we have to use Liu's algorithm.

2nd Improvement. Exploiting Low Degree Property of Superpoly (ePrint/2017/1063)

Qingju Wang, DTU, Denmark *Yonglin Hao*, Tsinghua Universtiy, China *Yosuke Todo*, NTT Secure Platform Laboratories, Japan *Chaoyun Li*, KU Leuven, Belgium *Takanori Isobe*, University of Hyogo, Japan *Willi Meier*, FHNW, Switzerland

Experimental cube attack.

- Superpoly is assumed as linear or quadratic.
 - Experimental cube recovers superpoly efficiently by exploiting this low degree property.

Take one step further!!

- We also exploit this low-degree property with the division property.
 - The upper bound of the degree on superpoly is estimated.
 - The time complexity is more reduced.

Innovative R&D by NTT

- If the degree is at most d.
 - We don't need to evaluate the ANF coefficients whose degree of monomials is more than d.
 - The time complexity is reduced from

$$2^{|I|+|J|}$$
 to $2^{|I|} imes \sum_{i=0}^d {|J| \choose i}$

How degree is evaluated?

This maximum value corresponds the upper bound of the algebraic degree of the superpoly.

Applications and results

Applications	rounds	cube size	[1]	time	ref.
Trivium	832	72	5	2^{77}	crypto17
	839	78	1	2^{79}	ePrint/2017/1063
Kreyvium	872	85	39	2^{124}	ePrint/2017/306
	888	102	36	2^{111.38}	ePrint/2017/1063

- Focus on 888-round attack on Kreyvium.
 - The number of involved secret variables is 36.
 - Previous estimations requires 2^{138} complexity.
 - However, since the degree of superpoly is at most 2, we can dramatically reduce the complexity.

Conclusion

- Division property based cube attacks
 - A new generic framework to evaluate the security against cube attacks.
 - It brings best key-recovery attacks against Trivium, Grain128a, ACORN, Kreyvium.
- Further improvements
 - Exploiting constant-0 cube brings more powerful superpoly recovery attacks.
 - Exploiting low degree property of the superpoly reduce the time complexity to recover the superpoly.

